Source code for maicos.modules.dielectriccylinder

#!/usr/bin/env python
#
# Copyright (c) 2025 Authors and contributors
# (see the AUTHORS.rst file for the full list of names)
#
# Released under the GNU Public Licence, v3 or any higher version
# SPDX-License-Identifier: GPL-3.0-or-later
"""Module for computing cylindrical dielectric profiles."""

import logging

import MDAnalysis as mda
import numpy as np
import scipy.constants

from ..core import CylinderBase
from ..lib.util import charge_neutral, citation_reminder, get_compound, render_docs


[docs] @render_docs @charge_neutral(filter="error") class DielectricCylinder(CylinderBase): r"""Cylindrical dielectric profiles. Computes the axial :math:`\varepsilon_z(r)` and inverse radial :math:`\varepsilon_r^{-1}(r)` components of the cylindrical dielectric tensor :math:`\varepsilon`. The components are binned along the radial direction of the cylinder. The :math:`z`-axis of the cylinder is pointing in the direction given by the ``dim`` parameter. The center of the cylinder is either located at the center of the simulation box (default) or at the center of mass of the ``refgroup``, if provided. For usage please refer to :ref:`How-to: Dielectric constant<howto-dielectric>` and for details on the theory see :ref:`dielectric-explanations`. For correlation analysis, the component along the :math:`z`-axis is used. ${CORRELATION_INFO} Also, please read and cite :footcite:p:`locheGiantaxialDielectric2019`. Parameters ---------- ${ATOMGROUP_PARAMETER} ${CYLINDER_CLASS_PARAMETERS} ${TEMPERATURE_PARAMETER} single : bool For a single chain of molecules the average of :math:`M` is zero. This flag sets :math:`\langle M \rangle = 0`. Attributes ---------- ${CYLINDER_CLASS_ATTRIBUTES} results.eps_z : numpy.ndarray Reduced axial dielectric profile :math:`(\varepsilon_z(r) - 1)` of the selected atomgroup results.deps_z : numpy.ndarray Estimated uncertainty of axial dielectric profile results.eps_r : numpy.ndarray Reduced inverse radial dielectric profile :math:`(\varepsilon^{-1}_r(r) - 1)` results.deps_r : numpy.ndarray Estimated uncertainty of inverse radial dielectric profile References ---------- .. footbibliography:: """ def __init__( self, atomgroup: mda.AtomGroup, bin_width: float = 0.1, temperature: float = 300, single: bool = False, output_prefix: str = "eps_cyl", refgroup: mda.AtomGroup | None = None, concfreq: int = 0, jitter: float = 0.0, dim: int = 2, rmin: float = 0, rmax: float | None = None, zmin: float | None = None, zmax: float | None = None, vcutwidth: float = 0.1, unwrap: bool = True, pack: bool = True, ) -> None: self._locals = locals() self.comp = get_compound(atomgroup) ix = atomgroup._get_compound_indices(self.comp) _, self.inverse_ix = np.unique(ix, return_inverse=True) if zmin is not None or zmax is not None or rmin != 0 or rmax is not None: logging.warning( "Setting `rmin` and `rmax` (as well as `zmin` and `zmax`) might cut " "off molecules. This will lead to severe artifacts in the dielectric " "profiles." ) super().__init__( atomgroup, unwrap=unwrap, pack=pack, refgroup=refgroup, jitter=jitter, concfreq=concfreq, dim=dim, zmin=zmin, zmax=zmax, bin_width=bin_width, rmin=rmin, rmax=rmax, wrap_compound=self.comp, ) self.output_prefix = output_prefix self.temperature = temperature self.single = single self.vcutwidth = vcutwidth def _prepare(self) -> None: logging.info( "Analysis of the axial and inverse radial " "components of the cylindrical dielectric tensor." ) # Print Philip Loche citation logging.info(citation_reminder("10.1021/acs.jpcb.9b09269")) super()._prepare() def _single_frame(self) -> float: super()._single_frame() # Precalculate the bins each atom belongs to. rbins = np.digitize(self.pos_cyl[:, 0], self._obs.bin_edges[1:-1]) # Calculate the charge per bin for the selected atomgroup. curQ_r = np.bincount( rbins[self.atomgroup.ix], weights=self.atomgroup.charges, minlength=self.n_bins, ) # In literature, the charge density is integrated along the radial direction to # get the dipole moment density. We can rewrite the integral by identifying: # q(a) = 2π * L * int_0^a ρ(r) * r dr, # where q(a) is the charge enclosed within a cylinder of radius a and length L. # This allows us to avoid numerical errors. self._obs.m_r = -np.cumsum(curQ_r) / 2 / np.pi / self._obs.L / self._obs.bin_pos # Same as above, but for the whole system. curQ_r_tot = np.bincount( rbins, weights=self._universe.atoms.charges, minlength=self.n_bins ) self._obs.m_r_tot = ( -np.cumsum(curQ_r_tot) / 2 / np.pi / self._obs.L / self._obs.bin_pos ) # Note that M_r is not really the total system dipole moment in radial # direction, but it keeps the nomenclature consistent across all of the # dielectric modules. self._obs.M_r = np.sum(self._obs.m_r_tot * self._obs.bin_width) self._obs.mM_r = self._obs.m_r * self._obs.M_r # Use virtual cutting method (for axial component) # ======================================================== # number of virtual cuts ("many") nbinsz = np.ceil(self._obs.L / self.vcutwidth).astype(int) # Move all r-positions to 'center of charge' such that we avoid monopoles in # r-direction. We only want to cut in z direction. chargepos = self.pos_cyl[self.atomgroup.ix, 0] * np.abs(self.atomgroup.charges) center = self.atomgroup.accumulate( chargepos, compound=self.comp ) / self.atomgroup.accumulate( np.abs(self.atomgroup.charges), compound=self.comp ) testpos = center[self.inverse_ix] rbins = np.digitize(testpos, self._obs.bin_edges[1:-1]) z = (np.arange(nbinsz)) * (self._obs.L / nbinsz) zbins = np.digitize(self.pos_cyl[self.atomgroup.ix, 2], z[1:]) curQz = np.bincount( rbins + self.n_bins * zbins, weights=self.atomgroup.charges, minlength=self.n_bins * nbinsz, ).reshape(nbinsz, self.n_bins) curqz = np.cumsum(curQz, axis=0) / (self._obs.bin_area)[np.newaxis, :] self._obs.m_z = -curqz.mean(axis=0) # This is the systems dipole moment in z-direction and # not the radial integral of the dipole density. self._obs.M_z = np.dot(self._universe.atoms.charges, self.pos_cyl[:, 2]) self._obs.mM_z = self._obs.m_z * self._obs.M_z # Save the total dipole moment in z dierection for correlation analysis. return self._obs.M_z def _conclude(self) -> None: super()._conclude() self._pref = 1 / scipy.constants.epsilon_0 self._pref /= scipy.constants.Boltzmann * self.temperature # Convert from ~e^2/m to ~base units self._pref /= ( scipy.constants.angstrom / (scipy.constants.elementary_charge) ** 2 ) if not self.single: # A factor of 2 pi L cancels out in the final expression because here M_z is # the total dipole moment in z-direction, not the radial integral of the # dipole density. M_z = 2 pi L \int_0^R dr r m(r) cov_z = self.means.mM_z - self.means.m_z * self.means.M_z cov_r = self.means.mM_r - self.means.m_r * self.means.M_r dcov_z = np.sqrt( self.sems.mM_z**2 + self.sems.m_z**2 * self.means.M_z**2 + self.means.m_z**2 * self.sems.M_z**2 ) dcov_r = np.sqrt( self.sems.mM_r**2 + self.sems.m_r**2 * self.means.M_r**2 + self.means.m_r**2 * self.sems.M_r**2 ) else: # <M> = 0 for a single line of water molecules. cov_z = self.means.mM_z cov_r = self.means.mM_r dcov_z = self.sems.mM_z dcov_r = self.sems.mM_r self.results.eps_z = self._pref * cov_z self.results.deps_z = self._pref * dcov_z self.results.eps_r = -( 2 * np.pi * self._obs.L * self._pref * self.results.bin_pos * cov_r ) self.results.deps_r = ( 2 * np.pi * self._obs.L * self._pref * self.results.bin_pos * dcov_r )
[docs] @render_docs def save(self) -> None: """${SAVE_METHOD_DESCRIPTION}""" # noqa: D415 outdata_z = np.array( [self.results.bin_pos, self.results.eps_z, self.results.deps_z] ).T outdata_r = np.array( [self.results.bin_pos, self.results.eps_r, self.results.deps_r] ).T columns = ["positions [Å]"] columns += ["ε_z - 1", "Δε_z"] self.savetxt( "{}{}".format(self.output_prefix, "_z.dat"), outdata_z, columns=columns ) columns = ["positions [Å]"] columns += ["ε^-1_r - 1", "Δε^-1_r"] self.savetxt( "{}{}".format(self.output_prefix, "_r.dat"), outdata_r, columns=columns )